If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x-20=0
a = 4; b = 14; c = -20;
Δ = b2-4ac
Δ = 142-4·4·(-20)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{129}}{2*4}=\frac{-14-2\sqrt{129}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{129}}{2*4}=\frac{-14+2\sqrt{129}}{8} $
| 26=12-(x-4) | | 2.39b-4.16=10.37 | | -6x-12-2+9=-6x | | -23-x-x+16=-2 | | 5m+46=987 | | -2x-5/4=x+5/3 | | 5^(x+2)=37 | | 4x+6/3=2x-2/3 | | 2x-7/5=5 | | 7/24x-1/24=4 | | 5x-23=400 | | 6x-3x+8=4x-2x-6 | | (6a+5a=-11 | | 7×n=42+7 | | 2x/5+9/5=3x/2-4/2 | | 0.90x+0.05(10-x)=0.10(56) | | 2/3x+1/3+3/8x+3/8=4 | | 3x*5x=48 | | 3x-10°=x | | 2x+(3x+7)=162 | | 8(x+3)=-2x+38 | | 8/24(2x-1)+3/8(x+1)=4 | | 2(3x+6)=3(5-4X) | | 14x+7=9(x+2) | | 7(3y+4)=19 | | X/5-7/5+x/5+3/5=58 | | .50x+.45(30)=42.5 | | 3/4x—1/3x=5/6x-5 | | X-7+x+3/5=58 | | 12=4•x•3 | | -2(2x+3)=5(5-4x) | | 2(2x-5)=0.33(9x-6)+6 |